dWS

Understanding PostgreSQL statistics
to optimize performance

Divya Sharma
Sr. RDS PostgreSQL SA

« Types of statistics in PostgreSQL
 Data distribution statistics
« Monitoring statistics

. Troubleshooting example

But why do we need to know about them?

 To understand how queries are planned - to be able to optimize
them.

* To understand when to create custom statistics by understanding
correlation between data

* To know about different monitoring views available for better
understanding of — when to run vaccum, when to add/remove
indexes etc.

Statistics in PostgreSQL

Statistics in
PostgreSQL

N

Data

Distribution Monitoring

Collected
Statistics

Single column Multivariate

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

Data Distribution - single col

aws
2

Data Distribution - single column statistics

« Can be updated by running the “ANALYZE" command (on its own or with
VACUUM)

« Can by triggered automatically by autovacuum worker if the following
calculated threshold exceed total number of tuples inserted, updated, or
deleted since the last ANALYZE :

analyze threshold = analyze base threshold + analyze scale factor * number of

tuples /] j

autovacuum_analyze_threshold autovacuum_analyze_scale_factor pg_class.reltuples

Note : The “ANALYZE" here has nothing to do with “EXPLAIN ANALYZE"

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 6
N

Data Distribution - single column statistics

« Information collected stores in pg_statistic system catalog (only readable by
superuser)

« pg_stats is a view on top of pg_statistics which is readable by all.

« The amount of samples considered by ANALYZE depends on the
default_statistics_target parameter.

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved
_/7

https://www.postgresql.org/docs/current/catalog-pg-statistic.html
https://www.postgresql.org/docs/current/runtime-config-query.html

Data Distribution - single column statistics

« Default value for default_statistics_target is 100, which means 100 most
common values ;100 histogram bounds can be stored in those arrays.

« default_statistics_target can be set per column basis or globally for the
entire database

postgres=> ALTER TABLE test_exp|ALTER COLUMN a SET STATISTICS 100;
ALTER TABLE
postgres=> \d+ test_exp

Table "public.test_exp"

Column | Type | Collation | Nullable | Default | Storage @Stats target@ Description
———————— it e e it —— -
a | integer | | not null | | plain
b | integer | I I | plain

Indexes:
"test_exp_pkey" PRIMARY KEY, btree (a)
Access method: heap

Note : Increasing the target causes a proportional increase in the

time and space needed to do ANALYZE.

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
\/‘7

| Data Distribution - single column statistics

postgres=> CREATE TABLE test_stats(id INT, name VARCHAR);

CREATE TABLE

postgres=> INSERT INTO test_stats VALUES (generate_series(1,10), 'test'||generate_series(1,10));
INSERT 0 10

postgres=> INSERT INTO test_stats VALUES (generate_series(1,10), 'test’'||generate_series(1,10));
INSERT 0 10

postgres=> INSERT INTO test_stats VALUES (generate_series(1,10), 'test'||generate_series(1,10));
INSERT 0 10

postgres=> INSERT INTO test_stats VALUES (generate_series(11,20), ' 'test’'||generate_series(11,20));
INSERT 0 10

postgres=>
postgres=>|ANALYZE VERBOSE test_stats ;

INFO: analyzing "public.test_stats”

INFO: "test_stats": scanned 1 of 1 pages, containing 4@ live rows and @ dead rows; 40 rows in sample, 40 estimated total rows
ANALYZE

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 9
\/‘7

Data Distribution - single column statistics

postgres=> SELECT * FROM pg_stats WHERE tablename ='test_stats';
-L RECORD 1 J---------- et et

aws

N

schemaname

tablename

attname

inherited

null_frac

avg_width

n_distinct
most_common_vals
most_common_fregs
histogram_bounds
correlation
most_common_elems
most_common_elem_fregs
elem_count_histogram
-[RECORD 2]----------
schemaname

tablename

attname

inherited

null_frac

avg_width

n_distinct
most_common_vals
most_common_freqgs
histogram_bounds

public
test_stats

id 4—”"————
.F

0

4

-0.5
{1,2,3,4,5,6,7,8,
{0.075,0.075,0.07
{11,12,13,14,15,1
@.7551595

9,10}
5,0.075,0.075,0.075,0.075,0.075,0.075,0.075}
6,

17,18,19,20} < To help the planner predict the selectivity
of inequality or range expressions, such as
where id is between 5000-10000.

public

test.stats___— MCV helps the planner predict the selectivity
e of equality expressions, such as where

0 / name='test5'
6
-0.5

{testl,test10,test2,test3,test4,test5,testo,test?,test8,test9}
{0.075,0.075,0.075,0.075,0.075,0.075,0.075,0.075,0.075,0.075}
{testll,testl2,testl3,testl4,testl5,testlo,testl7,testl18,test19,test20}

correlation -0.19043152
most_common_elems
most_common_elem_fregs
elem_count_histogram
© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 10

When to run ANALYZE?

. After a bulk insert/delete on a relation

« Major change in data distribution

« Major version upgrade

« Recently added or dropped an index from the relation

« Estimated rows and actual returned rows do not match in the
explain plan

Gather (cost=53594.61..781789.24 1dth=589) (actual time=385.471..6913.891 Cows=4571649 Jloops=1)

Workers Planned: 4
Workers Launched: 4
Buffers: shared hit=494801 read=34059
I/0 Timings: shared/local read=129.933

Note : For some of these changes, autoanalyze will run automatically. Like for

aWS © 2024, Amazon Web Services, In u lk inse rt/d e lete.

N

Data Distribution — multivari

aws
2

Data Distribution — multivariate statistics

« Multiple columns used in the query clauses are sometimes correlated, and
planner normally assumes that multiple conditions are independent of each
other.

« Reqgular statistics = per column = don't capture knowledge about cross-column
correlation

« Solution = Compute multivariate statistics using CREATE STATISTICS command

« Statistics object created stored in pg_statistic_ext (pg_stats_ext is a publicly
readable view)

« Data collection done by ANALYZE or autoanalyze

« Functional Dependencies, Multivariate N-distint, Multivariate MCV

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 13
_/7

https://www.postgresql.org/docs/current/catalog-pg-statistic-ext.html
https://www.postgresql.org/docs/current/view-pg-stats-ext.html

Data Distribution — multivariate statistics

« Functional Dependencies :

CREATE STATISTICS stts () ON city, zip FROM
zlpcodes;

ANALYZE zipcodes;

SELECT stxname, stxkeys, stxddependencies FROM

pg statistic ext joln pg statistic ext data on (oid = stxoid)
WHERE stxname = 'stts’;

stxname | stxkeys | stxddependencies

________ _|___________|___
stts | 1 5 | §{"1 => 5": 1.000000f #"5 => 1": 0.423130}

(1 row)

QV_V/S’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 14

Functional Dependencies example

postgres=> CREATE TABLE ext_stats(a int, b int);

CREATE TABLE n_distinct a=1000 ;
postgres=> INSERT INTO ext_stats SELECT x/1000, x/10000 FROM generate_series(1l,1000000) s(x); n distinct b=100

INSERT @ 1000000

postgres=> explain analyze select * from ext_stats where a=1 and b=0;
QUERY PLAN

Gather (cost=1000.00..11676.00 width=8) (actual time=0.330..64.876frows=1000f1oops=1)

Workers Planned: 2

Workers Launched: 2

-> Parallel Seq Scan on ext_stats (cost=0.00..10675.00 rows=4 width=8) (actual time=35.696..56.307 rows=333 loops=3)
Filter: (Ca = 1) AND (b = 0))
Rows Removed by Filter: 333000

Planning Time: 0.049 ms
Execution Time: 65.001 ms
(8 rows)

postgres=> create statistics s_ext_depend(dependencies) on a,b from ext_stats ;
CREATE STATISTICS

postgres=> ANALYZE ext_stats;
ANALYZE

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
\/‘7

15

Functional Dependencies example

postgres=> explain analyze select * from ext_stats where a=1 and b=0;
QUERY PLAN

Gather (cost=1000.00..11774.60 idth=8) (actual time=0.318..64.085) rows=1000 fLoops=1)
Workers Planned: 2

Workers Launched: 2

-> Parallel Seq Scan on ext_stats (cost=0.00..10675.00 rows=415 width=8) (actual time=35.004..55.364 rows=333 loops=3)
Filter: (Ca = 1) AND (b = 0))

Roue B ilter: 333000

Planning Time: 0.053 ms
Execution Time: 64.209 ms

(8 rows)

postgres=> explain analyze select * from ext_stats where a=1 and b=0;
QUERY PLAN

Gather (cost=1000.00..11676.00 rows=10 width=8) (actual time=0.330..64.876 rows=1000 loops=1)

Workers Planned: 2

Workers Launched: 2

-> Parallel Seq Scan on ext_stats (cost=0.00..10675.00 rows=4 width=8) (actual time=35.696..56.307 rows=333 loops=3)

Filter: (Ca = 1) AND (b = 0))

er: 333000

Planning Time: 0.049 ms

Execution Time: 65.001 ms

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

16

Data Distribution — multivariate statistics

« Multivariate n-distinct count:

CREATE STATISTICS stts2 (ndistinct) ON city, state, zip FROM
zilpcodes; ANALYZE zipcodes;

SELECT stxkeys AS k, stxdndistinct AS nd FROM pg statistic ext
joln pg statistic ext data on (oi1d = stxoid) WHERE stxname =
"SETES82” ¢

—~[RECORD 1 J-——————

k| 1 2 5

33178}

(1 row)

AWS 0 2024, Amazon e Seices . or s afises Al ights reserved 17

N

Data Distribution — multivariate statistics

« Multivariate MCV lists:

= CREATE STATISTICS stts3 (mcv) ON city, state FROM zipcodes;

= data collected only for those groups of columns appearing together in a
statistics object

= defined with the mcv option.

= Calculates the frequencies of most common values (mcv) together for the
specified columns

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved
_/7

18

Only consider creating statistics objects
for columns which are actually used in

conditions together

Data Distribution statistics and read replica

postgres=> create statistics s_ext_depend(dependencies) on a,b from ext_stats ;
ERROR: cannot execute CREATE STATISTICS in a read-only transaction

postgres=> analyze;
ERROR: cannot execute ANALYZE during recovery

Because a RR can only read from the disk and not write, it will use the data

distribution statistics from the primary.

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 20
N

Monitoring Statistics

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
N

Monitoring Statistics

* Collection and reporting of server activity

« (Can by dynamic — what's happening in my server right now -
controlled by track_activities

» Collected statistics — controlled by Cumulative Statistics System
(v15+) ; by (v14 and below)

22

Monitoring Statistics -

Information about exactly what is going on in the system right now

pg_stat_activity pg_stat_recovery_prefetch
pg_stat_replication pg_stat_ssl
pg_stat_wal_receiver pg_stat_gssapi
pg_stat_subscription pg_stat_progress_analyze
pg_stat_progress_create_index pg_stat_progress_cluster
pg_stat_progress_vacuum pg_stat_progress_copy

pg_stat_progress_basebackup

Note : The reporting and collection of these statistics is independent of the

cumulative statistics system

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 23
\/‘7

pg_stat_activity

postgres=> select * from pg_stat_activity where backend_type='client backend' and pid!=20360;

[RECORD 1 J----4-==——— o mmm e
datid 5

datname postgres

pid 20117

leader_pid

usesysid 16397

usename postgres

application_name
client_addr

+
I
I
I
I
I
I
| psql
I

client_hostname |
I
I
|
I
I
I
|
I
I
I
I
I
|

172.31.36.18

33012
2024-04-11 18:18:29.079321+00

20240411 18:-28:-28 . .
2024-04-11 18:28:31. 376951+®a log—m I I"I_d uration_statement

2024-04-11 18:28:31.420007+00

client_port

backend_start
yct g+nw+

uery_start
state_change

wait_event_type Client
1t _event ClientRead
backend_xid
backend_xmin
query_id -7652462281445876340
query select count(*) from foo;

Dackend_type client backend

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

postgres=> select * from pg_stat_activity where

backend_type="walsender';

pg_stat_activity

~[RECORD 1 J-mm—mmmmm oo oo oo oo

datid

datname

pid 17601
leader_pid

usesysid 16398
usename rdsrepladmin
application_name | walreceiver
client_addr 10.4.1.75
client_port 16058

backend_start 2024-04-11 17:18:41.989094+00
xact_start
query_start

state_change

2024-04-11 17:18:42.006455+00
2024-04-11 17:18:42.006485+00

wait_event_type Activity
wait _event WalSenderMain
state active

backend_x1d

+
|

I

I

|

I

|

I

I
client_hostname |
I

I

|

I

|

I

I

|

[
backend_xmin I
|

I

|

query_id

query

backend_type walsender

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

N

START_REPLICATION SLOT "rds_eu_west_1_db_kiwSyj47fmkgbcnud4Sccascjum"™ 17E/5C000000 TIMELINE 1

25

pg_stat_replication

postgres=> select * from pg_stat_replication;

2024-04-11 17:18:41.989094+00

backend_start
backend_xmin

-L RECORD 1 J----4---------—mmmmmmm e -
pid | 17601
usesysid | 16398
usename | rdsrepladmin
appiication_name | walreceiver
client_addr I 10.4.1.75
client_hostname |
client_port | 16058
I
I

sent_lsn 17E/CC000110

write_lsn 17E/CC0O00110

flush_1sn 17E/CC0O00110

replay_1lsn 17E/CC0O00110

flush_lag I

replay_lag I

sync_priority | @

sync_state | async

reply_time | 2024-04-11 19:37:35.464595+00 Run on the primary instance 26

* pg_stat_progress_vacuum

S BRECORDINENIEE =

pid 104701

duration 03:21:51.330818
waiting f

mode regular
database analytics

table events

phase vacuuming indexes
table size 1188 GB
total size 1682 GB
scanned 601 GB
vacuumed 571 GB

* pg_stat_progress_create_index

https://dataeqret.de/2017/10/deep-dive-into-postgres-stats-
pqg stat progress vacuum/

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 27
_/7

https://dataegret.de/2017/10/deep-dive-into-postgres-stats-pg_stat_progress_vacuum/
https://dataegret.de/2017/10/deep-dive-into-postgres-stats-pg_stat_progress_vacuum/

Statistics in PostgreSQL

Statistics in
PostgreSQL

N

Data
Distribution

Single column Multivariate

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

Monitoring

Collected
Statistics

28

Monitoring Statistics - Collected Statistics Views

Information about relations/database metadata

pg_stat_archiver pg_stat_slru
pg_stat_bgwriter pg_stat_replication_slots
pg_stat_database pg_stat_io

pg_stat_database_conflicts
pg_stat_user_tables
pg_stat_xact_user_tables
pg_stat_user_indexes

Note : The reporting and collection of these statistics is independent of the

cumulative statistics system

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 29
N

Monitoring Statistics -

« (Can be reset using - select pg_stat_reset(); - for the database you
are connected to.

« Every PostgreSQL process collects statistics locally, then updates
the shared memory at appropriate intervals.

e Clean shutdown - permanent copy in pg_stat directory ; unclean
shutdown - all counters reset.

30

Collected Statistics Views - pg_stat_bgwriter

postgres=> select * from pg_stat_bgwriter;

- RECORD 1]--------- e
checkpoints_timed | 24458

checkpoints_req

checkpoint_write_time s :

checkpoint_sync_time 80912

buffers_checkpoint 44392

buffers_clean 0

buffers_backend 18194
buffers_backend_fsync | 0
buffers_alloc 36090

I
|
|
maxwritten_clean | @
I
I
I
|

stats_reset 2024-01-17 19:56:46.641452+00

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
N

31

Collected Statistics Views - pg_stat_user_tables

postgres=> select * from pg_stat_user_tables order by rn_tup_upd+n_tup_de1) desc;l

-[RECORD 1]------- fmmmmmmmmmmm oo
relid | 24712
schemaname | public
relname s

5

2
seq_tup_read | 2522
idx_scan | 0 <
last_idx_scan I
idx_tup_fetch | 0
n_tup_ins | 1000
n_tup_upca
n_tup_del
n_tup_hot_upd Y
n_tup_newpage_upd | 250
n_live_tup | 251

o n_dead_tup 0

n_mod_since_analyze | 0
n_ins_since_vacuum)
last_vacuum
last_autovacuum
last_analyze

|

I

| 2024-03-09 02:04:04.405814+00

I
last_autoanalyze |

|

I

|

I

2024-04-08 22:31:36.81463+00 «—
024-03-09 02:04:04.413322+00

vacuum_count
autovacuum_count
analyze_count

a autoanalyze_count
-- ‘:’ W ZUZ4, AlNIAZULT VWWED SEerViILeS,

PR wWwoON

TG, OF ILWS dITIUdLES. ALL TIYTILS Teserveu.

32

Collected Statistics Views - pg stat user tables
postgres=> select * from pg_stat_user_tables where
-[RECORD 1 J------- Y,

7
2024-03-27 14:34:36.803696+00

relid | 24672
schemaname | public
relname | pgbench_accounts
seg_scan | 6
last_seq_scan | 2024-03-27 14:32:59.35374+00
seqg_tup_read | 300007
I
I

last_idx_scan

U X Up C

n_tup_ins 100000
n_tup_upd)
n_tup_del)
n_tup_hot_upd 0
n_tup_newpage_upd)
n_live_tup 100000
n_dead_tup)
n_mod_since_analyze | 0

last_vacuum 2024-03-08 23:59:01.0646285+00
last_autovacuum 2024-03-08 23:59:06.665808+00
last_analyze 2024-04-08 22:31:36.66896+00

I

I

I

I

I

I

I

I
n_ins_since_vacuum | @

I

I

I
last_autoanalyze | 2024-03-08 23:59:06.726678+00

I

I

I

I

vacuum_count 1
autovacuum_count 1
analyze_count 2
"autoanalyze_count 1

Collected Statistics Views - pg_stat_user_indexes

postgres=> select * from|pg_stat_user_indexes where relname='pgbench_accounts';
-[RECORD 1 J-4---------—---—mmmomm oo

relid | 24672

indexrelid | 24686

reLname pgbencn_accounts

indexrelname | pgbench_accounts_pkey
1dx_scan | 7

ast_tdx_scan]
1dx_tup_read | 200005
1dx_tup_fetch | 4

-[RECORD 2 J-+4---------mmmmmmmmmm e =
relid | 24672

indexrelid | 24757

relname | pgbench_accounts
indexrelname | idx2

idx_scan | @

idx_tup_read | @
idx_tup_fetch | @
aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 34

N

Collected Statistics Views - pg stat_io
postgres=> select * fron|pg_stat_io order by readsswrites desc;

-L RECORD 1 J--4---------—-mmmmmmmmmm o ——————
backend_type checkpointer «—

|
object | relation
EZZZEX{: : normal The backend_type is same as what
read._time | you see In pg_stat_activity :
a:%:gstime : 13124583 autovacuum launcher,

L) autovacuum worker,
wr}tebacks : J S logical replication launcher,
writeback_time | 1497.037 logical replication worker,
LGk : | parallel worker,
UL I background writer,
op_bytes | 8192 client backend etc.
hits |
evictions |
reuses I
fsyncs | 27400
fsync_time | 51610.241

|

stats_reset
ST e e

A e R S

35

Troubleshooting approach usi

aws
2

#1 - | see very high write 10 spikes in my
| metrics. What should | do?

pg_stat_io

Client
backend
pg_stat_bgwriter pg_stat_user_tables
log_checkpoints log_autovacuum_min_duration

37

#1 - | see very high write 10 spikes in my
| metrics. What should | do?

pg_stat_io

Client
backend

EXPLAIN ANALYZE

Create necessary
indexes and <« pg_stat_user_indexes
ANALYZE the table

38

Key Takeaways

Statistics in
PostgreSQL

\ 4 Y

Data
Distribution

Monitoring

Dynamic Collected
statistics Statistics

A

Single column Multivariate

ANALYZE command track_activities Cumulative Stat System

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Key Takeaways

- Data distribution statistics are different from monitoring statistics

« Statistics collected by ANALYZE are used by planner to plan queries

« PostgreSQL enables you to create multivariate statistics for correlated metrics
« More samples collected to ANALYZE relation, more space and time needed

« The monitoring statistics can provide important information related to -
vacuum, indexes, 10 usage by processes etc.

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 40

N

Thank you!

Divya Sharma
https://www.linkedin.com/in/divyasharma95/

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

iy

https://www.linkedin.com/in/divyasharma95/

